Proteomic analysis of the testa from developing soybean seeds.

نویسندگان

  • Ján A Miernyk
  • Mark L Johnston
چکیده

UNLABELLED Soybean (Glycine max (L.) Merr. cv Jack) seed development was separated into nine defined stages (S1 to S9). Testa (seed coats) were removed from developing seeds at stages S2, 4, 6, 8, and 9, and subjected to shotgun proteomic profiling. For each stage "total proteins" were isolated from 150 mg dry weight of seed coat using a phenol-based method, then reduced, alkylated, and digested with trypsin. The tryptic peptides were separated using a C18-reversed phase matrix, then analyzed using an LTQ Orbitrap Mass Spectrometer. Spectra were searched against the Phytozome G. max DB using the Sorcerer 2 IDA Sequest-based search algorithm. Identities were verified using Scaffold 3. A total of 306 (S2), 328 (S4), 273 (S6), 193 (S8), and 272 (S9) proteins were identified in three out of three biological replicates, and sorted into 11 functional groups: Primary Metabolism, Secondary Metabolism, Cellular Structure, Stress Responses, Nucleic Acid metabolism, Protein Synthesis, Protein Folding, Protein Targeting, Hormones and Signaling, Seed Storage Proteins, and Proteins of Unknown Function. In selected instances, individual seed coat proteins were quantified by spectral counting. The number of proteins involved in intermediary metabolism, flavonoid biosynthesis, protein folding and degradation are discussed as they relate to seed coat function. BIOLOGICAL SIGNIFICANCE Most previous analyses of seed coats have either targeted individual enzymes or used the results from high-throughput transcript profiling to infer biological function. Because there is seldom a linear correlation between transcript and protein levels, we have undertaken a shotgun proteomics-based description of soybean (G. max (L.) Merr. cv Jack) seed coats, as a function of development, in order to bridge this gap and to establish the baseline for a more comprehensive understanding of seed biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gel-based and gel-free proteome data associated with controlled deterioration treatment of Glycine max seeds

Data presented here are associated with the article: "In-depth proteomic analysis of soybean (Glycine max) seeds during controlled deterioration treatment (CDT) reveals a shift in seed metabolism" (Min et al., 2017) [1]. Seed deterioration is one of the major problems, affecting the seed quality, viability, and vigor in a negative manner. Here, we display the gel-based and gel-free proteomic da...

متن کامل

Role of Seed Coat in Imbibing Soybean Seeds Observed by Micro-magnetic Resonance Imaging

BACKGROUND AND AIMS Imbibition of Japanese soybean (Glycine max) cultivars was studied using micro-magnetic resonance imaging (MRI) in order to elucidate the mechanism of soaking injury and the protective role of the seed coat. METHODS Time-lapse images during water uptake were acquired by the single-point imaging (SPI) method at 15-min intervals, for 20 h in the dry seed with seed coat, and ...

متن کامل

Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis.

A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of ab...

متن کامل

Whole-Genome Resequencing Identifies the Molecular Genetic Cause for the Absence of a Gy5 Glycinin Protein in Soybean PI 603408

During ongoing proteomic analysis of the soybean (Glycine max (L.) Merr) germplasm collection, PI 603408 was identified as a landrace whose seeds lack accumulation of one of the major seed storage glycinin protein subunits. Whole genomic resequencing was used to identify a two-base deletion affecting glycinin 5 The newly discovered deletion was confirmed to be causative through immunological, g...

متن کامل

Method optimization for proteomic analysis of soybean leaf: Improvements in identification of new and low-abundance proteins

The most critical step in any proteomic study is protein extraction and sample preparation. Better solubilization increases the separation and resolution of gels, allowing identification of a higher number of proteins and more accurate quantitation of differences in gene expression. Despite the existence of published results for the optimization of proteomic analyses of soybean seeds, no compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of proteomics

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2013